If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7h^2-19=233
We move all terms to the left:
7h^2-19-(233)=0
We add all the numbers together, and all the variables
7h^2-252=0
a = 7; b = 0; c = -252;
Δ = b2-4ac
Δ = 02-4·7·(-252)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*7}=\frac{-84}{14} =-6 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*7}=\frac{84}{14} =6 $
| -34+4a=3(2a+5) | | -34+4a=3(2a | | 25x+8=5x-10 | | (x+x-75)2=370 | | -6-v=8v-6 | | 2(x+3x-75)=370 | | 2(4v-8)=27+9v | | x+3x-75=370 | | -4x=9x | | 1.50x(2.00)(6)=1.80(x+6) | | 3z-2z=5z+4 | | (4x^2+3)/(x^2-1)=0 | | 7.4x+225=54.76+15x | | 59/10+82/5=a | | 4-6n=16+3n+3+3 | | 43-x=38 | | x(3x-75)=370 | | 6x-0.5=5x | | 8=3x+x | | 5y-1.4=3y | | h+6=h | | Y=7x+283 | | 25x^2+0x-9=0 | | 5(8d+2)=-32 | | 12-(4x-18)=(36+5x)+(28-6×) | | 7x+10=(x+7) | | 11=-2k+4-1 | | 12(n-3)+396=12n+3 | | (x+1/x)^2=0 | | 3(3v+10=120 | | 90÷x=15 | | x-247=306 |